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ABSTRACT
Composite mechanics disciplines are presented and described at their
various levels of sophistication and attendant scales of application.
Correlation with experimental data is used as the prime discriminator between
alternative methods and level of sophistication. Major emphasis is placed
on: (1) where composite mechanics has been; (2) what it has accomplished; (3)
where it is headed, based on present research activities; and (4) at the risk
of being presumptuous, where it should be headed. The discussion is developed
using selected, but typical, examples of each composite mechanics discipline
identifying degree of success, with respect to correlation with experimental
data, and problems remaining. The discussion is centered about fiber/resin
composites drawn mainly from the author's research activities/experience

spanning two decades at Lewis.
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INTRODUCTION/BACKGROUND

Composite mechanics has evolved to encompass a wide range of continuum
and discrete mechanics methods. These methods are used to study and predict
fiber/matrix composite behavior. The composite behavior is studied and/or
predicted at various inherent scales (corresponding to the fabrication
processes) in the composite from microstructure to structural response. Within
each inherent scale has evolved a specialty composites mechanics discipline
with several levels of sophistication.

The various levels of sophistication that have evolved in each composite
mechanics discipline were influenced by three important factors: qp
capturing the intrinsic physics; (2) degree of local detail desired; and (3)
technical interests of the investigator(s). Collectively, these three factors
have led to numerous significant contributions at the various scales of
composite behavior.

The objective of this report is to describe/discuss composite mechanics
at its various levels of sophistication and attendant inherent scales of
application with respect to past, present, and future. The intent of preparing
such a report is to stimulate thinking which will hopefully lead to
“revolutionary" research. The description/discussion is organized as follows:
(1) composite mechanics inherent scales; (2) composite mechanics disciplines;
(3) composite mechanics discipline levels of sophistication; (4) factors
influencing composite mechanics discipline; scale, and level of
sophistication; (5) discriminators between alternate methods of level of
sophistication; (6) composite mechanics - where it has been; (7) composite
mechanics - what it has accomplished; (8) composite mechanics - where it is

headed; and (9) composite mechanics - where it should go (a personal view).



Exampies are used to supplement and complement the discussion. These
examples are mainly taken from the author and his Lewis collegues' research
over the years. However, they are representative of the evolution of composite
mechanics during that period. The references sited are NASA reports which are
available in practically all technical libraries. Each of these references

includes relevant references for that subject.

SYMBOLS
A laminate axial stiffness
C global damping matrix; laminate stiffness matrix; stress wave speed
D lTaminate bending stiffness
d fiber diameter
E elastic properties matrix as defined by subscripts; modulus, as defined
by subscripts
€ failure strain as defined by subscripts
F global force; failure criterion function
g hygrothermal property degradation factor
G strain energy release rate
I identity matrix
i index
K global stiffness matrix; coupling coefficient in failure criterion
M global mass matrix; laminate moment as defined by subscripts
m moisture
N lTaminate in-plane force as defined by subscripts
Ng number of layers in a laminate
R ply orientation matrix; impacting sphere radius
S strength as defined by subscripts

SN fatigue strength




T temperature

t thickness as defined by subscripts

u global displacement

x,¥,Z global (structural axes) coordinates

1,2,3 ply material axes coordinates

o thermal expansion coefficient as defined by subscripts
B moisture expansion coefficient as defined by subscripts
§ inter fiber spacing

£ strain as defined by subscripts

€0 global reference plane strain

A eigenvalue; resin selection criteria ratio as defined by subscripts
X global curvatures as defined by subscripts

v Poisson's ratio as defined by subscripts

) density as defined by subscripts

o stress as defined by subscripts

w circular frequency

Subscripts

C compression
C composite property

HTM hygrothermomechanical effect

Q ply property

m moisture, hygrothermal effects

r resin property

S shear

5 sphere

T tension, temperature

Xyz respective coordinate directions, properties



123 ply material axes respective properties

o T-tension or C-compression
B T-tension or C-compression
Matrices

(1 array, matrix

vector, column matrix
[ 171 matrix inverse
[ 17 matrix transpose

COMPOSITE MECHANICS: INHERENT SCALES AND DISCIPLINES

The various composite scales correspond to the way the composite is
made. A schematic illustrating how a polyimide composite biade is made is
shown in Fig. 1. The scales may be visualized as the dimension
(homogenization dimension) within which the heterogeneous local structure is
described and integrated. MWithin this scale, the individual constituents are
homogenized. Referring to Fig. 1, the micromechanics scale is the fiber
spacing within the unidirection composite (after in situ polymerization,
Fig. 1). The macromechanics scale is the ply thickness since the ply
material - axis may be rotated to provide the desired properties about the
structural axes (broad goods and ply cutting, Fig. 1). The laminate theory
scale is the laminate thickness which is an integral multiple of ply
thickness. Within this scale the heterogeneous layered structure (made of
plies and interply layers) is homogenized into a composite laminate (stacking
of plies, Fig. 1). The structural mechanics scale is several times the
laminate thickness (finished blade, Fig. 1). Therefore, these are the four
important scales within which the various composite mechanics disciplines are

formultated.



The various composite mechanics disciplines that have evolved to
describe/study composite behavior may be grouped into those listed in Table 1.
The respective scales and homogenization dimensions are summarized in
Table 2. The math model sophistication for each discipline, including region
modeled and key assumptions made, are summarized in Table 3. Continuum
mechanics includes theory of elasticity, plasticity as well as related
subjects, for example fatigue and defect growth.

Several of the composite mechanics disciplines have been integrated into
computer codes. These codes generally simulate the composite behavior at its
various scales. How the integration can be implemented in a code is
schematically shown in Fig. 2.

The left part of Fig. 2 depicts the upward integration (synthesis) of
constituent material behavior through the successively larger composite scales
and up to the structure. The right part depicts the downward traced
(decomposition) of the structural behavior through the progressively smaller
composite scales and down to the constituent material space (P =
f (o, T, m). This figure pictorially represents the major disciplines of
composite mechanics and parallels the fabrication process in Fig. 1. The
combined stress failure criteria, singularity mechanics, and life/durability
disciplines (Table 2) generally need the composite behavior (stresses,
strains, displacements) predicted by this type of integrated computer code at
the various scales. The results presented and discussed later were obtained
using such a code [117.

COMPOSITE MECHANICS: WHERE HAS IT BEEN? WHAT HAS IT ACCOMPLISHED?

A summary of where composite mechanics has been and what has been
accomplished by using it is presented in Table 4. The summary, expectedly, is

presented in qualitative terms. It includes: (1) research conducted on that



discipline; (2) success achieved - to the extent that the research has
suceeded in providing the formalisms to understand and/or quantify the
composite behavior with which the discipline is dealing; and (3) application -
how extensively the composites community is using that discipline.

It is worth noting that those disciplines which have received rather
minimal amount of research are used most extensively. The reasons are: (1)
the theoretical fundamentals are easily understood - follow classical
mechanics; (2) the application is relatively straight forward; and (3) the
predicted results correlate with measured data.

The results to be presented subsequently were selected to demonstrate, to
some extent, the qualitative evaluation summarized in Table 4.

Composite Micromechanics

A schematic on which composite micromechanics can be based is shown in
Fig. 3. The concepts depicted in this figure in conjunction with mechanics
principles and assuming integrated average behavior leads to the type of
micromechanics equations summarized in Fig. 4 [2]. A complete set of ply
hygrothermomechanical behavior relationships is summarized in Fig. 5.
Comparisons of normalized results predicted by using the equations in Fig. 4
with measured data are shown in Fig. 6 for several intraply hybrid
composites. As can be seen, the comparisons are generally in good agreement.
A noticeable exception is the shear modulus (SM). This modulus is difficult
to measure accurately; this may account for apparent discrepanies.

Micromechanics equations for ply uniaxial strengths are summarized in
Fig. 7 [31. Comparisons with measured data are shown in Fig. 8 for the same
intraply hybrids as in Fig. 6. The comparisons are also in generally good

agreement. The data in Figs. 6 and 8 are from Ref. 4.



Predicted results inciuding hygrothermal effects are shown in Fig. 9 [5].
Again, the agreement is very good considering the complexity of the composite
behavior simulated by the relatively simple equations. Collectively, the
comparisons shown in Figs. 5, 6, 8, and 9 demonstrate that micromechanics
predict unidirectional composite behavior within "acceptable engineering
accuracy". Acceptable engineering accuracy is used herein to mean that the
agreement between predicted results and measured data is considered to be as
good as can be expected based on engineering judgement and on considerations
of the complexities and uncertainties involved.

Composite Macromechanics

The composite macromechanics discipline has generated the equations to
predict off-axis (unidirectional composites loaded at an angle to the fiber
direction) properties when the properties about the material axes are known.
These equations are summarized in Fig. 10 in matrix form [6]. The schematic
in this figure defines the two coordinate axes and the rotation. Results
predicted by these equations are compared with measured data in Figs. 11 and
12 [7). As can be seen, the agreement is very good. MWhat is more significant
about these comparisons is that properties about the material axes were
predicted using the micromechanics equations described previously.

Combined Stress Failure Criteria

An expanded form of a combined stress failure criterion equation
including hygrothermal and constant amplitude cyclic load effects is shown in
Fig. 13 [61. Results predicted from this equation are compared with measured
data in Fig. 14 [7]. The data is at room temperature, dry monotonic load

conditions. The agreement is excellent.



Laminate Theory

A form of laminate theory equations are summarized in Fig. 15 [1].
Results predicted by using these equations are compared with measured data in
Table 5 [8] for moduli and Poisson's ratios. The agreement is better than
10 percent except for two of the in plane shear moduli. It is well known that
measuring composite shear properties is a rather delicate task. Uncertainties
in measured data are just as much in question for these types of tests as are
some of the assumptions made in deriving Taminate theory equations.

Laminate strength (stress at fracture) predicted by linear laminate
theory (equations Fig. 15) in combination with combined stress failure
criteria (equations similar to that in Fig. 13) are compared with measured
data in Fig. 16 [8]. The data in this figure is for three different laminates
subjected to five different load conditions and tested at hot-wet
environmental conditions. The spread in the predicted results is for two
cases: (1) first ply failure - lower bound and (2) last ply failure - upper
bound. It is very important to observe that the predicted lower bound (first
ply failure) is below the lowest measured data for the majority of the cases.
Needless to say, the agreement is well within acceptable engineering accuracy.

Laminate fracture stress predictions for a composite thin tube subjected
to combined tension and torsion (Fig. 17) are compared in Table 6 [9]. The
agreement is excellent and what is even more important, the predicted upper
bound is below the measured data. It is accepted within the composites
community that linear laminate theory for first-ply-failure tends to predict
conservative fracture stresses for the laminate. This is consistent with the

results shown in Table 6.



Singularity Mechanics

Singularity mechanics in composites has received and continues to receive
substantial research attention. Singularity mechanics is required in order to
determine stress concentrations in the vicinity of: (1) defects (cracks,
holes, delaminations, ply drops); (2) free-edge interlaminar planes; (3)
joints; (4) load applications; and (5) support conditions. The level of
sophistication for composite singularity mechanics varies from the simple
net-section-area stress, to anisotropic elasticity, to three-dimensional
finite difference or finite element analysis.

The equations for predicting the hoop stress concentration in the
periphery of a circular hole in an anisotropic infinite plate due to in-plane
loads are shown in Fig. 18 [6]. These equations are significant since
measured data show that the stress concentration in crack-like defects is
similar to a circular hole with equivalent diameter (Fig. 19, [61). It may be
concluded, therefore, that laminate defect stress concentrations are readily
estimated within acceptable engineering accuracy, using closed form equations
for equivalent diameter circular holes in infinite anisotropic plates.

Stress singularity fields near free edges, near interlaminar
delaminations, and near transply cracks are frequently evaluated using
appropriate three-dimensioal finite element analyses. Representative results
obtained from these analyses are shown in Fig. 20 [10] for free-edge and in
Fig. 21 [11] for interlaminar delamination. The corresponding local failure
modes induced by these stress fields, cumulative damage, and subsequent
progressive fracture will be discussed later.

Life/Durability
Life/durability is generally used to describe how long a composite

structure with inadvertent defects will survive in its monotonic or cyclic
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load service environment. Fracture toughness and damage tolerance are
equivalently used to imply life/durability. Both of these equivalent terms
seek to answer one or more of the following important questions: (1) what is
the number of load cycles which will induce structural fracture in a composite
without and/or with assumed defects? (2) what is the critical size that an
assumed defect will grow to for imminent structural fracture under applied
service loading conditions? and (3) what is the defect size that a loaded
composite structure can safely withstand? The first two questions are
associated with the life/durability under cyclic loads; while the third
question is associated with a suddenly induced damage and it is traditionally
considered a composite material characterstic. The answers to all three
questions are clearly structural, since they require simultaneous
consideration of composite material, laminate configuratioﬁ structure, and
loading conditions.

The results summarized in Fig. 22 [12] are an answer to the first
question. These were obtained using a procedure which consists of a
simplified composite mechanics model in conjunction with empirical data [12].
This procedure can be used to quantify laminate configuration and/or loading
environment effects on laminate 1ife/durability. The answer to the second
question requires evaluation of local damage occurrence, cumulative damage,
and progressive fracture. This evaluation is, by necessity, performed by
developing and using sophisticated and integrated computer codes such as
CODSTRAN (COmposite Durability STRuctural ANalysis, [131). Results obtained
using CODSTRAN are compared with measured data in Fig. 23 [131. As can be

observed, the agreement is well within acceptable engineering accuracy. The

1.



local failure modes contributing to damage growth are summarized in Table 7
[14]. Clearly CODSTRAN can be used to computationally simulate the local
damage occurrence, cumulative damage, and progressive fracture.

The answer to the third question is obtained by evaluating what is
defined herein as "Composite Structure Fracture Toughness." Composite
structure fracture toughness is predicted by using composite mechanics in
conjunction with fracture mechanics concepts and with finite element
analysis. The general procedure is summarized in Fig. 24 [11].
Representative results obtained are shown in Fig. 25 [11] where ranges of
measured data are also included. The importance of composite mechanics in
answering the third question is far reaching. It makes it possible to
quantify composite damage tolerance in terms of two easily identifiable
fracture toughness parameters: strain energy release rate and defect size
(crack length).

It is worth noting that the use of composite mechanics in conjunction
with finite element analysis in order to computationally simulate composite
life/durability (fracture - toughness/damage-tolerance) is a recent and
evolving development. The traditional practice to evaluate these is the use
of appropriate experiments.

Structural Analysis

The governing equations for composite structural analysis are summarized
in Fig. 26 in matrix form. These equations are embedded in general purpose
structural analysis codes. Composite mechanics are used to generate all the
material properties required in these equations. Representative results
obtained for the natural frequencies of a hybrid composite fan blade (Fig. 26)
are summarized and compared with measured data in Table 8 [15] and in Fig. 27

[15] for results obtained for impact response. The agreement is very good.
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The fan blade was selected to illustrate the effectiveness of composite
mechanics in describing composite behavior at all scale levels and including
interply and intraply hybrids as well as a metallic leading edge device. The
composite mechanics used, in this case, is integrated into a computer code
COBSTRAN (COmposite Blade STRuctural ANalysis, [16]1). A unique feature in
this code is its resident constituent materials databank where the properties
of a large number of fibers and matrices are available. This databank,
composite micromechanics and laminate theory make it possible to simulate all
types of composites and even combinations with metals. It is the good
agreement with measured data (Table 8 and Fig. 27) that has led to the
extensive use of composite structural analysis noted in Table 4.

The prediction of life/durability of composite structures generally
requires extensive use of composite structural analysis. The structural
analysis is used to predict the global structural response (displacements,
frequencies, buckling, etc.) while singularity mechanics and methods described
in the last section are used to predict lTocal behavior including dominant
failure modes.

COMPOSITE MECHANICS: WHERE IS IT HEADED? WHERE SHOULD IT GO?

Where composite mechanics is headed (based on recent research emphasis)
and where it should go (author's personal view) are summarized in Table 9 for
the seven different disciplines. As can be seen in Table 9, the trends for
where it is going are: (1) traditional, classical, or conventional; (2)
mostly negligible anticipated research effort; and (3) major emphasis on user
familiarity with available general purpose finite element codes. Singularity
mechanics, and life/durability however, will continue to receive considerable

classical and/or semiconventional attention.



On the other hand, the author sees need for balanced research in all the
disciplines. This research should focus on developing methods and criteria
for: (1) fracture initiation and propagation at all scale levels; (2)
combined mode fracture and mode tracking; (3) in situ ply strengths and
failure mode branching; (4) three-dimensional behavior with detailed account
of local heterogeneities and nonlinearities; (5) environmental
(moisture/temperature) effects; (6) composite mechanics, specialty finite
elements and substructuring techniques for all scale levels; and (7)
dedicated, self-adaptive, expert-system-driven algorithms for enhanced
computational efficiency while retaining acceptable engineering accuracy in
the predicted results. The development of these methods will more than likely
require innovative, creative, and even revolutionary thinking in order to
introduce the new variables that define/describe the local physics. Two
illustrative examples in this direction are: the effect of interlaminar
delamination on natural frequencies (Fig. 28) and a rectangular array with an
off-center fiber for formuiating micromechanics (Fig. 29).

CONCLUSIONS

A personal, but representative, assessment of composite mechanics has
been presented. The assessment is presented by grouping composite mechanics
into seven disciplines: (1) micromechanics; (2) macromechanics; (3) combined
stress failure; (4) laminate theory; (5) singularity mechanics; (6)
life/durability; and (7) structural analysis. The scale levels associated
with each discipline and the various levels of sophistication of composite
math models in each discipline are described. What has been accomplished in
each discipline, emphasis on current research, and future trends are
summarized. The future trends are mainly conventional. Greater progress will

be achieved by pursuing unconventional and innovative methods which are
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dedicated, adaptive, and expert-system-driven. Composite mechanics spans many

disciplines with each playing a very significant role in its future growth and

success. Successful contributions, which are timely and cost-effective, will

require the collective/coordinated research efforts of experts from these

disciplines.
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TABLE 1. - COMPOSITE MECHANICS DESCIPLINES

Micromechanics - Intraply heterogeneity
Macromechanics - Ply homogenization

Combined stress failure criteria - Five strengths
Laminate theory - Layered anisotropic medium
Singularity mechanics - Stress concentrations
Life/durability - Cumulative damage and propagation

Structural mechanics - Composite or laminate homogenization
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TABLE 2. - COMPQSITE MECHANICS SCALE LEVELS

Disciplines

Scale Homogenization ratio,
fiber diameters (F.D.)

Micromechanics

Macromechanics

Combined stress
failure criteria

Laminate theory

Singularity mechanics

Life/durability

Structural mechanics

Fiber diameter

Ply thickness

Ply thickness

Laminate thickness
interply layer
thickness

Infinitesimal
Ply thickness
Laminate thickness

finite element
size

1.2 F.D. (FVR = 0.6)

15 F.D. (except
boron/epoxy)

15 F.D. (except
boron/epoxy)

Multiples of ply thickness
15 F.D. and greater
<«Fiber diameter

15 F.D. (except
boron/epoxy)

Many times the laminate
thickness

TABLE 3. - COMPOSITE MECHANICS MATH MODEL SOPHISTICATION

Discipline

Region
modeled

Key
assumption(s)

Math model

Micromechanics

Macromechanics

Combined stress
failure
Ltaminate theory
Singultarity
mechanics
Life/durability

Structural
mechanics

Single fiber
array

Continuum
Continuum
Line through

thickness

Continuum

Continuum

Continuum

No interface
orthotropic
constituents

Homogeneous
orthotropic

Homogeneous
orthotropic

Anisotropic layers
no interply layer

Anisotropic

Orthotropic

Anisotropic

Mechanics of materials
continuum mechanics
finite element

Mechanics of materials
Continuum mechanics
five inplane strength

Mechanics of materials
finite element

Continuum mechanics
finite element
finite difference

"Fracture" mechanics

Structural mechanics
finite element

18




[Where has it been?

TABLE 4.

- COMPOSITE MECHANICS

What has it accomplished?]

Discipline Research Success Application
conducted (understood/
quantified)
Composite Considerable | Partial Limited
micromechanics
Composite Negligible Exceptional Extensive
macromechanics
Combined stress Minimal Noticeable Extensive
failure
Laminate theory Considerable | Acceptable Extensive
Singularity Substantial Promising Limited
mechanics
Life/durability Substantial Promising Limited
Structural Minimal Highly acceptable Extensive
mechanics

TABLE 5. - COMPARISON OF MEASURED AND PREDICTED ELASTIC
PROPERTIES OF ANGLEPLIED LAMINATES

[AS/3501-5 with 1.8 percent moisture and room temperature.]

Laminate Longitudinal Transverse Shear Major
modulus, MSI modulus, Modulus, Poisson's
MSI MSI Ratio
[0/+45,/0/+451g
Measured 6.3 3.08 3.21 0.803
Predicted 6.3 3.2 3.80 .781
Percent 0 +3.9 +18.4 -2.70
difference
[05/+45/02/90/01g
Measured 13.0 4.2 1.5 0.325
Predicted 13.0 4.5 1.6 .318
Percent 0 +7.1 +6.7 =2.2
difference
[€0/+45/90),1¢
Measured 6.68 6.62 2.34 0.350
Predicted 7.20 7.20 2.70 .333
Percent +7.8 +8.7 15.4 -4.8
difference
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TABLE 6. - COMPARISON OF FRACTURE STRESSES

(The specimen was loaded to fracture in
combined axial compression and torsional
loading condition.]

Stress type

Stress value, KSI

Measured Predicted
Lower bound | Upper bound
Axial 20.2 17.9 19.4
Torsional 23.1 20.6 22.3

TABLE 7. - FRACTURE MODES2 OF [+61g G/E LAMINATES

[Predicted by Codstran.]

Notch type Ply orientation; [+6]g; © in degrees
0 3 5 10 | 15 [ 30 | 45| 60 | 75 | 90
Unnotched ~— | LT | LT | LT | LT § I S I TT 77T | 17
solid -3 1s3is3 s | -5 | ——|-—]-
Notched -- st istisl|s |s |44 )14]1m}Tr
through LTHLT LT | -- | - 1S S TT | -~ | --
stit 52
Notched —- stist|slhys |s |44 1410 |77
through LT [ LT | LT | =—— | LT | S S M| -1 -
hole TT
aLT = Longitudinal tension.
TT = Transverse tension.
S = Intraply shear.
Numbers denote failure modes as follows:
(1> initial fracture due to intrapiy shear in the
notch tip zone
(2) minimal intraply shearing during fracture
(3) some intraply shear occurring near constraints
(grips>
(4) delaminations occur in notch tip zone prior to any
intraply damage
I = Interply delamination.




TABLE 8. - VIBRATION FREQUENCIES OF

HYBRID COMPOSITE FAN BLADE

Mode | Measured | Predicted | Predicted/
measured

62 64 1.03

190 186 .98

288 303 1.05

425 454 1.07

667 653 .98

[Where is it headed?

TABLE 9. - COMPOSITE MECHANICS

Where should it go?]

Discipline Effort/approach Should go
(personal view)
Composite Negligible Fracture initiation

micromechanics

Composite
macromechanics

Combined stress
failure

Laminate
theory

Singularity
mechanics

Life/durability

Structural
mechanics

(traditional)

Negligible
(classical)

Negligible
(classical)

Nonlinear
(conventional)

Extensive
homogeneous anisotropy
(classical)

Progressive fracture
(semi conventional)

Familiarity with available
GPFEC (user mode)
limited FE development

and propagation

Combined mode fracture
and mode tracking

In situ ply strengths and
failure mode branching

Increase computational
efficiency and three-
dimensional behavior

Local heterogeneity and
nonlinearity

Hygral, thermal, mechani-
cal, and temporal
aspects properly and
tractably integrated

Development of composite
mechanics specialty
finite elements and
substructuring methods
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